bmc_hub/app/services/ollama_service.py
Christian 3a8288f5a1 feat: Implement quick analysis on PDF upload for CVR, document type, and number extraction
- Added `check_invoice_number_exists` method in `EconomicService` to verify invoice numbers in e-conomic journals.
- Introduced `quick_analysis_on_upload` method in `OllamaService` for extracting critical fields from uploaded PDFs, including CVR, document type, and document number.
- Created migration script to add new fields for storing detected CVR, vendor ID, document type, and document number in the `incoming_files` table.
- Developed comprehensive tests for the quick analysis functionality, validating CVR detection, document type identification, and invoice number extraction.
2025-12-09 14:54:33 +01:00

601 lines
25 KiB
Python

"""
Ollama Integration Service for BMC Hub
Handles supplier invoice extraction using Ollama LLM with CVR matching
"""
import json
import hashlib
import logging
from pathlib import Path
from typing import Optional, Dict, List, Tuple
from datetime import datetime
import re
from app.core.config import settings
from app.core.database import execute_insert, execute_query, execute_update
logger = logging.getLogger(__name__)
class OllamaService:
"""Service for extracting supplier invoice data using Ollama LLM"""
def __init__(self):
self.endpoint = settings.OLLAMA_ENDPOINT
self.model = settings.OLLAMA_MODEL
self.system_prompt = self._build_system_prompt()
logger.info(f"🤖 Initialized OllamaService: {self.endpoint}, model={self.model}")
def _build_system_prompt(self) -> str:
"""Build Danish system prompt for invoice extraction with CVR"""
return """Du er en ekspert i at læse og udtrække strukturerede data fra danske fakturaer, kreditnotaer og leverandørdokumenter.
VIGTIGE REGLER:
1. Returner KUN gyldig JSON - ingen forklaring eller ekstra tekst
2. Hvis et felt ikke findes, sæt det til null
3. Beregn confidence baseret på hvor sikker du er på hvert felt (0.0-1.0)
4. Datoer skal være i format YYYY-MM-DD
5. DANSKE PRISFORMATER:
- Tusind-separator kan være . (punkt) eller mellemrum: "5.965,18" eller "5 965,18"
- Decimal-separator er , (komma): "1.234,56 kr"
- I JSON output skal du bruge . (punkt) som decimal: 1234.56
- Eksempel: "5.965,18 kr" → 5965.18 i JSON
- Eksempel: "1.234,56 DKK" → 1234.56 i JSON
6. CVR-nummer skal være 8 cifre uden mellemrum
7. Moms/VAT skal udtrækkes fra hver linje hvis muligt
8. DOKUMENTTYPE DETEKTION:
- "invoice" = Almindelig faktura
- "credit_note" = Kreditnota (refusion, tilbagebetaling, korrektion)
- Kig efter ord som: "Kreditnota", "Credit Note", "Refusion", "Tilbagebetaling", "Godtgørelse"
9. BELØB OG FORTEGN (ABSOLUT KRITISK):
- **ALMINDELIGE FAKTURAER**: Alle beløb skal være POSITIVE tal (total_amount > 0, line_total > 0)
- **KREDITNOTAER**: Alle beløb skal være NEGATIVE tal (total_amount < 0, line_total < 0)
- Hvis dokumentet siger "Faktura" → document_type: "invoice" → POSITIVE beløb
- Hvis dokumentet siger "Kreditnota" → document_type: "credit_note" → NEGATIVE beløb
JSON format skal være:
{
"document_type": "invoice" eller "credit_note",
"invoice_number": "fakturanummer eller kreditnota nummer",
"vendor_name": "leverandør firmanavn",
"vendor_cvr": "12345678",
"invoice_date": "YYYY-MM-DD",
"due_date": "YYYY-MM-DD",
"currency": "DKK",
"total_amount": 1234.56 (NEGATIVT for kreditnotaer),
"vat_amount": 123.45 (NEGATIVT for kreditnotaer),
"original_invoice_reference": "reference til original faktura (kun for kreditnotaer)",
"lines": [
{
"line_number": 1,
"description": "beskrivelse af varen/ydelsen",
"quantity": antal_som_tal,
"unit_price": pris_per_stk (NEGATIVT for kreditnotaer),
"line_total": total_for_linjen (NEGATIVT for kreditnotaer),
"vat_rate": 25.00,
"vat_amount": moms_beløb (NEGATIVT for kreditnotaer),
"confidence": 0.0_til_1.0
}
],
"confidence": gennemsnits_confidence,
"raw_text_snippet": "første 200 tegn fra dokumentet"
}
EKSEMPEL PÅ FAKTURA (POSITIVE BELØB):
Input: "FAKTURA 2025-001\\nGlobalConnect A/S\\nCVR: 12345678\\n1 stk iPhone 16 @ 5.965,18 DKK\\nMoms (25%): 1.491,30 DKK\\nTotal: 7.456,48 DKK"
Output: {
"document_type": "invoice",
"invoice_number": "2025-001",
"vendor_name": "GlobalConnect A/S",
"vendor_cvr": "12345678",
"total_amount": 7456.48,
"vat_amount": 1491.30,
"lines": [{
"line_number": 1,
"description": "iPhone 16",
"quantity": 1,
"unit_price": 5965.18,
"line_total": 5965.18,
"vat_rate": 25.00,
"vat_amount": 1491.30,
"confidence": 0.95
}],
"confidence": 0.95
}
EKSEMPEL PÅ KREDITNOTA (NEGATIVE BELØB):
Input: "KREDITNOTA CN-2025-042\\nGlobalConnect A/S\\nCVR: 12345678\\nReference: Faktura 2025-001\\nTilbagebetaling:\\n1 stk iPhone 16 returneret @ -5.965,18 DKK\\nMoms (25%): -1.491,30 DKK\\nTotal: -7.456,48 DKK"
Output: {
"document_type": "credit_note",
"invoice_number": "CN-2025-042",
"vendor_name": "GlobalConnect A/S",
"vendor_cvr": "12345678",
"original_invoice_reference": "2025-001",
"total_amount": -7456.48,
"vat_amount": -1491.30,
"lines": [{
"line_number": 1,
"description": "iPhone 16 returneret",
"quantity": 1,
"unit_price": -5965.18,
"line_total": -5965.18,
"vat_rate": 25.00,
"vat_amount": -1491.30,
"confidence": 0.95
}],
"confidence": 0.95
}"""
async def extract_from_text(self, text: str) -> Dict:
"""
Extract structured invoice data from text using Ollama
Args:
text: Document text content
Returns:
Extracted data as dict with CVR, invoice number, amounts, etc.
"""
# No truncation - send full text to AI
prompt = f"{self.system_prompt}\n\nNU SKAL DU UDTRÆKKE DATA FRA DENNE FAKTURA:\n{text}\n\nReturner kun gyldig JSON:"
logger.info(f"🤖 Extracting invoice data from text (length: {len(text)})")
try:
import httpx
# Detect if using qwen3 model (requires Chat API)
use_chat_api = self.model.startswith('qwen3')
async with httpx.AsyncClient(timeout=1000.0) as client:
if use_chat_api:
# qwen3 models use Chat API format
logger.info(f"🤖 Using Chat API for {self.model}")
response = await client.post(
f"{self.endpoint}/api/chat",
json={
"model": self.model,
"messages": [
{
"role": "system",
"content": self.system_prompt
},
{
"role": "user",
"content": f"NU SKAL DU UDTRÆKKE DATA FRA DENNE FAKTURA:\n{text}\n\nVIGTIGT: Dit svar skal STARTE med {{ og SLUTTE med }} - ingen forklaring før eller efter JSON!"
}
],
"stream": False,
"format": "json",
"options": {
"temperature": 0.1,
"top_p": 0.9,
"num_predict": 2000
}
}
)
else:
# qwen2.5 and other models use Generate API format
logger.info(f"🤖 Using Generate API for {self.model}")
response = await client.post(
f"{self.endpoint}/api/generate",
json={
"model": self.model,
"prompt": prompt,
"stream": False,
"options": {
"temperature": 0.1,
"top_p": 0.9,
"num_predict": 2000
}
}
)
if response.status_code != 200:
raise Exception(f"Ollama returned status {response.status_code}: {response.text}")
result = response.json()
# Extract response based on API type
if use_chat_api:
# qwen3 models sometimes put the actual response in "thinking" field
raw_response = result.get("message", {}).get("content", "")
thinking = result.get("message", {}).get("thinking", "")
# If content is empty but thinking has data, try to extract JSON from thinking
if not raw_response and thinking:
logger.info(f"💭 Content empty, attempting to extract JSON from thinking field (length: {len(thinking)})")
# Try to find JSON block in thinking text
json_start = thinking.find('{')
json_end = thinking.rfind('}') + 1
if json_start >= 0 and json_end > json_start:
potential_json = thinking[json_start:json_end]
logger.info(f"📦 Found potential JSON in thinking field (length: {len(potential_json)})")
raw_response = potential_json
else:
logger.warning(f"⚠️ No JSON found in thinking field, using full thinking as fallback")
raw_response = thinking
elif thinking:
logger.info(f"💭 Model thinking (length: {len(thinking)})")
# DEBUG: Log full result structure
logger.info(f"📊 Chat API result keys: {list(result.keys())}")
logger.info(f"📊 Message keys: {list(result.get('message', {}).keys())}")
else:
raw_response = result.get("response", "")
logger.info(f"✅ Ollama extraction completed (response length: {len(raw_response)})")
# Parse JSON from response
extraction = self._parse_json_response(raw_response)
# CRITICAL: Fix amount signs based on document_type
# LLM sometimes returns negative amounts for invoices - fix this!
document_type = extraction.get('document_type', 'invoice')
if document_type == 'invoice':
# Normal invoices should have POSITIVE amounts
if extraction.get('total_amount') and extraction['total_amount'] < 0:
logger.warning(f"⚠️ Fixing negative total_amount for invoice: {extraction['total_amount']}{abs(extraction['total_amount'])}")
extraction['total_amount'] = abs(extraction['total_amount'])
if extraction.get('vat_amount') and extraction['vat_amount'] < 0:
extraction['vat_amount'] = abs(extraction['vat_amount'])
# Fix line totals
if 'lines' in extraction:
for line in extraction['lines']:
if line.get('unit_price') and line['unit_price'] < 0:
line['unit_price'] = abs(line['unit_price'])
if line.get('line_total') and line['line_total'] < 0:
line['line_total'] = abs(line['line_total'])
if line.get('vat_amount') and line['vat_amount'] < 0:
line['vat_amount'] = abs(line['vat_amount'])
elif document_type == 'credit_note':
# Credit notes should have NEGATIVE amounts
if extraction.get('total_amount') and extraction['total_amount'] > 0:
logger.warning(f"⚠️ Fixing positive total_amount for credit_note: {extraction['total_amount']}{-abs(extraction['total_amount'])}")
extraction['total_amount'] = -abs(extraction['total_amount'])
if extraction.get('vat_amount') and extraction['vat_amount'] > 0:
extraction['vat_amount'] = -abs(extraction['vat_amount'])
# Fix line totals
if 'lines' in extraction:
for line in extraction['lines']:
if line.get('unit_price') and line['unit_price'] > 0:
line['unit_price'] = -abs(line['unit_price'])
if line.get('line_total') and line['line_total'] > 0:
line['line_total'] = -abs(line['line_total'])
if line.get('vat_amount') and line['vat_amount'] > 0:
line['vat_amount'] = -abs(line['vat_amount'])
# Add raw response for debugging
extraction['_raw_llm_response'] = raw_response
return extraction
except Exception as e:
error_msg = f"Ollama extraction failed: {str(e)}"
logger.error(f"{error_msg}")
error_str = str(e).lower()
if "timeout" in error_str:
return {
"error": f"Ollama timeout efter 1000 sekunder",
"confidence": 0.0
}
elif "connection" in error_str or "connect" in error_str:
return {
"error": f"Kan ikke forbinde til Ollama på {self.endpoint}",
"confidence": 0.0
}
else:
return {
"error": error_msg,
"confidence": 0.0
}
def _parse_json_response(self, response: str) -> Dict:
"""Parse JSON from LLM response with improved error handling"""
try:
# Log preview of response for debugging
logger.info(f"🔍 Response preview (first 500 chars): {response[:500]}")
# Find JSON in response (between first { and last })
start = response.find('{')
end = response.rfind('}') + 1
if start >= 0 and end > start:
json_str = response[start:end]
logger.info(f"🔍 Extracted JSON string length: {len(json_str)}, starts at position {start}")
# Try to fix common JSON issues
# Remove trailing commas before } or ]
json_str = re.sub(r',(\s*[}\]])', r'\1', json_str)
# Fix single quotes to double quotes (but not in values)
# This is risky, so we only do it if initial parse fails
try:
data = json.loads(json_str)
return data
except json.JSONDecodeError:
# Try to fix common issues
# Replace single quotes with double quotes (simple approach)
fixed_json = json_str.replace("'", '"')
try:
data = json.loads(fixed_json)
logger.warning("⚠️ Fixed JSON with quote replacement")
return data
except:
pass
# Last resort: log the problematic JSON
logger.error(f"❌ Problematic JSON: {json_str[:300]}")
raise
else:
raise ValueError("No JSON found in response")
except json.JSONDecodeError as e:
logger.error(f"❌ JSON parsing failed: {e}")
logger.error(f"Raw response preview: {response[:500]}")
return {
"error": f"JSON parsing failed: {str(e)}",
"confidence": 0.0,
"raw_response": response[:500]
}
def calculate_file_checksum(self, file_path: Path) -> str:
"""Calculate SHA256 checksum of file for duplicate detection"""
sha256 = hashlib.sha256()
with open(file_path, 'rb') as f:
while chunk := f.read(8192):
sha256.update(chunk)
checksum = sha256.hexdigest()
logger.info(f"📋 Calculated checksum: {checksum[:16]}... for {file_path.name}")
return checksum
async def _extract_text_from_file(self, file_path: Path) -> str:
"""Extract text from PDF, image, or text file"""
suffix = file_path.suffix.lower()
try:
if suffix == '.pdf':
return await self._extract_text_from_pdf(file_path)
elif suffix in ['.png', '.jpg', '.jpeg']:
return await self._extract_text_from_image(file_path)
elif suffix in ['.txt', '.csv']:
with open(file_path, 'r', encoding='utf-8', errors='ignore') as f:
return f.read()
else:
raise ValueError(f"Unsupported file type: {suffix}")
except Exception as e:
logger.error(f"❌ Text extraction failed for {file_path.name}: {e}")
raise
async def _extract_text_from_pdf(self, file_path: Path) -> str:
"""Extract text from PDF using pdfplumber (better table/layout support)"""
try:
import pdfplumber
all_text = []
with pdfplumber.open(file_path) as pdf:
for page_num, page in enumerate(pdf.pages):
# Strategy: Use regular text extraction (includes tables)
# pdfplumber's extract_text() handles tables better than PyPDF2
page_text = page.extract_text(layout=True, x_tolerance=2, y_tolerance=2)
if page_text:
all_text.append(page_text)
text = "\\n".join(all_text)
logger.info(f"📄 Extracted {len(text)} chars from PDF with pdfplumber")
return text
except Exception as e:
logger.error(f"❌ PDF extraction failed: {e}")
raise
async def _extract_text_from_image(self, file_path: Path) -> str:
"""Extract text from image using Tesseract OCR"""
try:
import pytesseract
from PIL import Image
image = Image.open(file_path)
# Use Danish + English for OCR
text = pytesseract.image_to_string(image, lang='dan+eng')
logger.info(f"🖼️ Extracted {len(text)} chars from image via OCR")
return text
except Exception as e:
logger.error(f"❌ OCR extraction failed: {e}")
# Fallback to English only
try:
text = pytesseract.image_to_string(Image.open(file_path), lang='eng')
logger.warning(f"⚠️ Fallback to English OCR: {len(text)} chars")
return text
except:
raise
def _get_mime_type(self, file_path: Path) -> str:
"""Get MIME type from file extension"""
suffix = file_path.suffix.lower()
mime_types = {
'.pdf': 'application/pdf',
'.png': 'image/png',
'.jpg': 'image/jpeg',
'.jpeg': 'image/jpeg',
'.txt': 'text/plain',
'.csv': 'text/csv'
}
return mime_types.get(suffix, 'application/octet-stream')
async def quick_analysis_on_upload(self, pdf_text: str) -> Dict:
"""
Quick analysis when file is uploaded - extracts critical fields only:
- CVR number (to match vendor)
- Document type (invoice vs credit note)
- Invoice/credit note number
This runs BEFORE template matching for early vendor detection.
Args:
pdf_text: Extracted text from PDF
Returns:
Dict with cvr, document_type, document_number, vendor_id, vendor_name, is_own_invoice
"""
from app.core.config import settings
logger.info("⚡ Running quick analysis on upload...")
result = {
"cvr": None,
"document_type": None, # 'invoice' or 'credit_note'
"document_number": None,
"vendor_id": None,
"vendor_name": None,
"is_own_invoice": False # True if this is an outgoing invoice (BMC's own CVR)
}
# 1. FIND CVR NUMBER (8 digits)
# Look for patterns like "CVR: 12345678", "CVR-nr.: 12345678", "CVR 12345678"
# Important: Supplier invoices have BOTH buyer (BMC=29522790) and seller CVR
# We need the SELLER's CVR (not BMC's own)
cvr_patterns = [
r'CVR[:\-\s]*(\d{8})',
r'CVR[:\-\s]*nr\.?\s*(\d{8})',
r'CVR[:\-\s]*nummer\s*(\d{8})',
r'SE[:\-\s]*(\d{8})', # SE = Svensk CVR, men også brugt i DK
r'\b(\d{8})\b' # Fallback: any 8-digit number
]
# Find ALL CVR numbers in document
found_cvrs = []
for pattern in cvr_patterns:
matches = re.finditer(pattern, pdf_text, re.IGNORECASE)
for match in matches:
cvr_candidate = match.group(1)
# Validate it's a real CVR (starts with 1-4, not a random number)
if cvr_candidate[0] in '1234' and cvr_candidate not in found_cvrs:
found_cvrs.append(cvr_candidate)
# Remove BMC's own CVR from list (buyer CVR, not seller)
vendor_cvrs = [cvr for cvr in found_cvrs if cvr != settings.OWN_CVR]
if settings.OWN_CVR in found_cvrs:
# This is a proper invoice where BMC is the buyer
if len(vendor_cvrs) > 0:
# Found vendor CVR - use the first non-BMC CVR
result['cvr'] = vendor_cvrs[0]
logger.info(f"📋 Found vendor CVR: {vendor_cvrs[0]} (ignored BMC CVR: {settings.OWN_CVR})")
# Try to match vendor
vendor = self.match_vendor_by_cvr(vendor_cvrs[0])
if vendor:
result['vendor_id'] = vendor['id']
result['vendor_name'] = vendor['name']
else:
# Only BMC's CVR found = this is an outgoing invoice
result['is_own_invoice'] = True
result['cvr'] = settings.OWN_CVR
logger.warning(f"⚠️ OUTGOING INVOICE: Only BMC CVR found")
elif len(vendor_cvrs) > 0:
# No BMC CVR, but other CVR found - use first one
result['cvr'] = vendor_cvrs[0]
logger.info(f"📋 Found CVR: {vendor_cvrs[0]}")
vendor = self.match_vendor_by_cvr(vendor_cvrs[0])
if vendor:
result['vendor_id'] = vendor['id']
result['vendor_name'] = vendor['name']
# 2. DETECT DOCUMENT TYPE (Invoice vs Credit Note)
credit_keywords = [
'kreditnota', 'credit note', 'creditnote', 'kreditfaktura',
'refusion', 'tilbagebetaling', 'godtgørelse', 'tilbageførsel'
]
text_lower = pdf_text.lower()
is_credit_note = any(keyword in text_lower for keyword in credit_keywords)
if is_credit_note:
result['document_type'] = 'credit_note'
logger.info("📄 Document type: CREDIT NOTE")
else:
result['document_type'] = 'invoice'
logger.info("📄 Document type: INVOICE")
# 3. EXTRACT DOCUMENT NUMBER
# For invoices: "Faktura nr.", "Invoice number:", "Fakturanr."
# For credit notes: "Kreditnota nr.", "Credit note number:"
if result['document_type'] == 'credit_note':
number_patterns = [
r'kreditnota\s*(?:nr\.?|nummer)[:\s]*(\S+)',
r'credit\s*note\s*(?:no\.?|number)[:\s]*(\S+)',
r'kreditfaktura\s*(?:nr\.?|nummer)[:\s]*(\S+)',
]
else:
number_patterns = [
r'faktura\s*(?:nr\.?|nummer)[:\s]*(\S+)',
r'invoice\s*(?:no\.?|number)[:\s]*(\S+)',
r'fakturanr\.?\s*[:\s]*(\S+)',
]
for pattern in number_patterns:
match = re.search(pattern, pdf_text, re.IGNORECASE)
if match:
result['document_number'] = match.group(1).strip()
logger.info(f"🔢 Document number: {result['document_number']}")
break
logger.info(f"✅ Quick analysis complete: CVR={result['cvr']}, Type={result['document_type']}, Number={result['document_number']}, Vendor={result['vendor_name']}")
return result
def match_vendor_by_cvr(self, vendor_cvr: Optional[str]) -> Optional[Dict]:
"""
Match vendor from database using CVR number
Args:
vendor_cvr: CVR number from extraction
Returns:
Vendor dict if found, None otherwise
"""
if not vendor_cvr:
return None
# Clean CVR (remove spaces, dashes)
cvr_clean = re.sub(r'[^0-9]', '', vendor_cvr)
if len(cvr_clean) != 8:
logger.warning(f"⚠️ Invalid CVR format: {vendor_cvr} (cleaned: {cvr_clean})")
return None
# Search vendors table
vendor = execute_query(
"SELECT * FROM vendors WHERE cvr_number = %s",
(cvr_clean,),
fetchone=True
)
if vendor:
logger.info(f"✅ Matched vendor: {vendor['name']} (CVR: {cvr_clean})")
return vendor
else:
logger.info(f"⚠️ No vendor found with CVR: {cvr_clean}")
return None
# Global instance
ollama_service = OllamaService()